Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C32⋊C4

Direct product G=N×Q with N=C2 and Q=C2×C32⋊C4
dρLabelID
C22×C32⋊C424C2^2xC3^2:C4144,191


Non-split extensions G=N.Q with N=C2 and Q=C2×C32⋊C4
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C32⋊C4) = C3⋊S33C8central extension (φ=1)244C2.1(C2xC3^2:C4)144,130
C2.2(C2×C32⋊C4) = C4×C32⋊C4central extension (φ=1)244C2.2(C2xC3^2:C4)144,132
C2.3(C2×C32⋊C4) = C2×C322C8central extension (φ=1)48C2.3(C2xC3^2:C4)144,134
C2.4(C2×C32⋊C4) = C32⋊M4(2)central stem extension (φ=1)244C2.4(C2xC3^2:C4)144,131
C2.5(C2×C32⋊C4) = C4⋊(C32⋊C4)central stem extension (φ=1)244C2.5(C2xC3^2:C4)144,133
C2.6(C2×C32⋊C4) = C62.C4central stem extension (φ=1)244-C2.6(C2xC3^2:C4)144,135
C2.7(C2×C32⋊C4) = C62⋊C4central stem extension (φ=1)124+C2.7(C2xC3^2:C4)144,136

׿
×
𝔽